Real Engineering Decision Making ยท Comparison Tables ยท Analysis Framework

Devstral 2 ยท Benchmark & Comparison

What you care about isn't 'who's stronger', but 'whether the input-output ratio is worthwhile in real engineering projects'.

Engineering Decision Overview

Core Tip๏ผšFirst think 'who to choose', then see 'why'. The table below helps you make decisions quickly.

Quick Selection๏ผšQuick tip: For personal users, start with Devstral Small 2. For enterprise users, consider Devstral 2.

Devstral Small 2

Recommended for Beginners
โœ… Local deployment
โœ… Open source
โœ… Single machine runnable
โœ… Privacy friendly
๐Ÿ’ฐ Excellent cost
๐Ÿ› ๏ธ Simple deployment

Best for๏ผšPersonal development, small teams, limited budget

Devstral 2

Balanced Choice
โœ… Local deployment
โœ… Open source
โœ… Single machine runnable
โœ… Privacy friendly
๐Ÿ’ฐ Good cost
โš ๏ธ Medium deployment complexity

Best for๏ผšMedium to large projects, need higher performance

Note๏ผšRequires better hardware configuration

DeepSeek-V3.2

Performance Oriented
โœ… Local deployment
โœ… Open source
โŒ Requires multiple cards
โœ… Privacy friendly
๐Ÿ’ฐ Higher cost
๐Ÿ› ๏ธ Complex deployment

Best for๏ผšLarge enterprises, pursuing ultimate performance

Note๏ผšRequires multi-card setup, high operational cost

Claude Sonnet 4.5

Cloud Service
โŒ Cloud API only
โŒ Closed source
โŒ No local support
โš ๏ธ Limited privacy
๐Ÿ’ฐ Pay-as-you-go
๐Ÿ› ๏ธ Zero deployment

Best for๏ผšQuick prototyping, not considering data privacy

Note๏ผšData residency risks, uncontrollable costs

GPT-5.1 Codex

Top Performance
โŒ Cloud API only
โŒ Closed source
โŒ No local support
โš ๏ธ Limited privacy
๐Ÿ’ธ Very high cost
๐Ÿ› ๏ธ Zero deployment

Best for๏ผšPursuing best results regardless of cost

Note๏ผšExtremely high cost, data security risks

Performance Benchmark Comparison

Important๏ผšData for reference only, not equivalent to engineering conclusions

Performance Benchmark Comparison

Data for reference only, not equivalent to engineering conclusions

ModelParameter ScaleSWE-bench (Verified)Terminal BenchPositioning Description
Devstral 2123B
โ‰ˆ 71-73%
โ‰ˆ 31-34%
Medium to large projects, need higher performance
Devstral Small 224B
โ‰ˆ 67-69%
โ‰ˆ 21-24%
Personal development, small teams, limited budget
DeepSeek-V3.2671B
โ‰ˆ 72-74%
โ‰ˆ 45-48%
Large enterprises, pursuing ultimate performance
Claude Sonnet 4.5Closed Source
โ‰ˆ 76-78%
โ‰ˆ 41-44%
Quick prototyping, not considering data privacy
GPT-5.1 CodexClosed Source
โ‰ˆ 77-79%
Highest
โ‰ˆ 56-60%
Highest
Pursuing best results regardless of cost

๐Ÿ“Š Benchmark Data Source Description

Engineering Decision Advice

One-line Conclusion
Devstral 2 achieves close to top-tier commercial model performance at a lower cost in real GitHub Issue fixing (SWE-bench) scenarios.
Engineering Decision Advice
  • Personal/Small Team๏ผšStart with Devstral Small 2 (24B)
  • Heavy Tasks/Long Context๏ผšConsider Devstral 2 (123B) or inference service
  • Key Principle๏ผšRun a small A/B test with your own repo, more reliable than looking at rankings
Devstral 2 ยท Benchmark & Comparison